Bitcoin Code

Lesson 1: Advanced

By Thomas Numnum



Introduction to the Bitcoin
Source Code



Overview and Historical Context

* Bitcoin was created by an anonymous person or group of people using the
pseudonym Satoshi Nakamoto.

* The source code for Bitcoin was released in 2009, marking the start of
decentralized cryptocurrencies.

* Bitcoin's code is open-source, meaning anyone can view, copy, or modify it.

* The Bitcoin protocol is defined by this code, which sets the rules for how the
Bitcoin network operates.

 Historically, Bitcoin's code has undergone numerous revisions and updates to
improve security and functionality.

* The genesis block, the first block in the Bitcoin blockchain, was mined by
Nakamoto in 2009.



Core Components of Bitcoin Code

Bitcoin Core: The reference client and the main software used to run Bitcoin
nodes.

Blockchain: The decentralized ledger that records all Bitcoin transactions,
implemented in the code.

Proof-of-Work Algorithm: The consensus mechanism used by Bitcoin to validate
and add transactions to the blockchain.

Cryptographic Functions: Essential for creating addresses, forming transactions,
and ensuring security.

P2P Network Protocol: Allows nodes to communicate with each other, sharing
transaction and block data.

Wallet Implementation: Enables users to store, send, and receive bitcoins.



Setting up the Bitcoin Development
Environment

Git Repository: The primary source for obtaining the latest Bitcoin code, frequently
updated by contributors.

Dependencies: Essential libraries and software required to compile and run the Bitcoin
software.

Bitcoin Build System: A set of scripts and configurations to compile the Bitcoin source
code.

Configuration Files: Allow customization of node behavior, including setting network
parameters and logging.

Test Framework: An integral part of the codebase, ensuring the stability and security of
updates.

Documentation: Guides and READMEs that assist developers in understanding and
contributing to the project.



The Bitcoin Core Architecture



Understanding the Bitcoin Repository
Structure

 src Folder: Contains the main implementation files and is the heart of the Bitcoin
Core software.

* test Folder: Dedicated to unit tests, ensuring code reliability and security.

* doc Folder: Houses documentation, offering guidelines and explanations for
developers.

e contrib Folder: Contains scripts and data pertinent to Bitcoin but not part of the
core code.

* binaries (bin) Folder: Where compiled executables reside after the build process.

* Dependencies Folder: Stores external libraries and tools that Bitcoin relies on for
various functions.



Important Files and Their Purpose

bitcoin.cpp: The main entry point for the Bitcoin Core software, initializing key
components.

net.h & net.cpp: Define the networking protocols and handle peer-to-peer connections.

chain.h & chain.cpp: Manage the blockchain structure, including block validation and
storage.

wallet.h & wallet.cpp: Oversee wallet functionality, from key management to
transaction creation.

script.h & script.cpp: Handle scripting capabilities, enabling complex transaction types.

consensus.h & consensus.cpp: Establish the consensus rules, ensuring network
agreement on valid transactions.



The Bitcoin Core Daemon: bitcoind

 bitcoind: The command-line daemon version of the Bitcoin software, allowing for
headless operation.

* Enables server-based operations without the need for a graphical interface.

* RPC interface: Allows developers to interact and send commands to the Bitcoin
network.

e Configuration: Users can customize settings via the bitcoin.conf file for tailored
operations.

* Logging: bitcoind provides detailed logs for troubleshooting and monitoring
network interactions.

* Essential for infrastructure projects where GUI isn't necessary or desired.



Bitcoin Protocol and Network
Communication



The Peer-to-Peer Network

Peer-to-Peer (P2P): A decentralized network where participants communicate directly
without intermediaries.

Nodes: Individual computers on the P2P network that validate and relay transactions.
Decentralization: Bitcoin's P2P network ensures no single point of failure or control.

Gossip Protocol: Used to propagate transactions and blocks to every node in the
network.

Security: The P2P structure makes the Bitcoin network resistant to censorship and
external attacks.

Network Health: The more nodes, the healthier, more robust, and decentralized the
network becomes.



Message Types and Communication
Protocol

* Message Types: Specific packets of data exchanged between nodes to relay
information.

* Version Message: Announces a node to the network and shares version
information.

* Inv Message: Used to advertise the availability of a transaction or block.

* GetData Message: A request for a specific piece of data, like a transaction
or block.

* Tx Message: Relays individual transaction data across the network.
* Block Message: Shares block data, crucial for blockchain synchronization.



The Bitcoin's P2P Code

P2P Code: The backbone of Bitcoin's decentralized network, enabling direct
node-to-node communication.

Decentralization: Bitcoin's P2P code ensures no central authority, making the
network censorship-resistant.

Node Discovery: P2P code facilitates the discovery of other nodes, ensuring
network robustness.

Data Propagation: Efficiently spreads transactions and blocks across the entire
network.

Ban Mechanism: Nodes can ban misbehaving peers, ensuring network integrity.

Network Scalability: P2P code allows the network to scale and handle increasing
numbers of nodes.



The Blockchain Data Structure



Understanding the Block Structure

Block Header: Contains metadata about the block, including the previous block's
hash.

Timestamp: Records when the block was created, ensuring chronological order.

Merkle Root: A cryptographic hash of all transactions in the block, ensuring data
integrity.

* Nonce: A value used in proof-of-work, crucial for block validation and mining.
 Transaction Counter: Indicates the number of transactions within the block.

 Transaction List: A detailed list of all transactions included in the block.



Implementing Blocks in Bitcoin Code

* C++ Implementation: Bitcoin's core code is primarily written in C++.
* Block Class: Defines the structure and methods associated with a block.

* Hash Function: Utilizes SHA-256 to generate a unique identifier for each
block.

* Proof-of-Work: Implemented within the block class to validate and mine
new blocks.

e Serialization: Allows blocks to be converted into a format suitable for
network transmission.

* Chainstate: Represents the current state of the blockchain, ensuring blocks
are added correctly.



Block Validation and the Chainstate
Database

* Block Validation: Ensures the integrity and authenticity of each block
before addition to the blockchain.

* Consensus Rules: Set of protocols that every block must adhere to for
acceptance.

 Chainstate Database: Stores the latest state of the Bitcoin blockchain.

* UTXO Set: Represents the unspent transaction outputs, crucial for
validating new transactions.

* LevelDB: The database technology used to manage the Chainstate.

* Reorganization: A process where the blockchain may switch to a longer
chain, ensuring consensus.



Transactions in the Bitcoin
Code



Understanding the Transaction Structure

* Transaction Components: Every Bitcoin transaction consists of inputs, outputs,
and a timestamp.

* Inputs: Refer to the source of bitcoins, typically from previous transactions'
outputs.

e Outputs: Define the new owner of the bitcoins and the amount transferred.

* ScriptSig and ScriptPubKey: Cryptographic scripts ensuring only the rightful
owner can spend the bitcoins.

* Transaction ID (TXID): A unique identifier generated from the transaction's
details.

* Locktime: Specifies the earliest time a transaction can be added to the
blockchain.



Implementing Transactions in the Bitcoin
Code

Transaction Creation: In the Bitcoin code, transactions are initiated by creating a new
CTransaction object.

Signature Generation: For transaction validation, a cryptographic signature is generated
using the user's private key.

UTXO Set: Transactions reference the Unspent Transaction Output (UTXO) set to
determine available funds.

Validation Process: Before being added to the blockchain, each transaction undergoes
rigorous validation checks.

Mempool: Once validated, transactions await in the memory pool (mempool) before
being mined into a block.

Fee Calculation: Transaction fees are determined based on transaction size and network
congestion.



Transaction Validation

Signature Verification: Every transaction must have its cryptographic signature verified
to ensure authenticity.

Double Spending: The Bitcoin code checks to prevent double spending, ensuring coins
aren't used twice.

Reference to UTXO: Transactions must reference a valid Unspent Transaction Output to
be considered legitimate.

Script Evaluation: Bitcoin employs a scripting system for transactions, which is evaluated
during validation.

Consensus Rules: All transactions must adhere to the network's consensus rules to
maintain uniformity.

Mempool Acceptance: Valid transactions are added to the mempool, awaiting inclusion
in a future block.



Scripting and Smart Contracts



Understanding Bitcoin Script

Stack-based Language: Bitcoin Script is a simple, stack-based programming language.

Non-Turing Complete: Unlike Ethereum's Solidity, Bitcoin Script is non-Turing complete,
limiting its complexity.

Unlocking Funds: The primary purpose is to specify conditions for unlocking bitcoins in a
transaction output.

OP_CODES: Bitcoin Script uses various operation codes (OP_CODES) to define
transaction rules.

P2SH Transactions: Pay-to-Script-Hash (P2SH) allows more complex transaction types,
expanding Bitcoin's flexibility.

Safety Measures: Certain OP_CODES are disabled to prevent potential vulnerabilities in
the network.



Bitcoin Script Opcodes

e Definition: Opcodes are the individual commands or functions in Bitcoin Script.
* Variety: There are over 100 different opcodes, each with a unique purpose.

* Disabled Opcodes: Some opcodes were disabled for security reasons in Bitcoin's
early days.

» Stack Manipulation: Opcodes like OP_DUP and OP_SWAP manage the stack's
data.

* Arithmetic Operations: Opcodes such as OP_ADD and OP_SUB perform basic
math.

* Crypto Functions: Opcodes like OP_CHECKSIG validate cryptographic signatures.



Implementing Script in the Bitcoin Code

Definition: Bitcoin Script is a stack-based, non-Turing complete scripting language.
Purpose: Script defines the conditions under which a transaction output can be spent.
File Location: The main implementation is found in the script.cpp and script.h files.
Interpreter: Bitcoin uses an interpreter to execute and validate scripts in transactions.

SigOps Count: Bitcoin limits the number of signature operations in a block for network
protection.

Flexibility: While limited, Script allows for various custom transaction types beyond
simple transfers.



Handling Wallets



The Bitcoin Wallet: Purpose and Structure

e Definition: A Bitcoin wallet is a digital tool that allows users to manage their
bitcoin holdings.

* Key Storage: Wallets securely store private keys, which are essential for signing
transactions.

* Types: There are various wallet types, including hardware, software, and paper
wallets.

* Hierarchical Deterministic (HD) Wallets: These wallets generate keys from a
single seed, ensuring easy backup.

* Functionality: Beyond storage, wallets facilitate sending and receiving bitcoins.

e Security: Wallets implement multiple layers of encryption and protection
mechanisms.



Implementing Wallets in Bitcoin Code

Definition: In Bitcoin code, a wallet is a collection of keypairs and transactions
associated with those keys.

Wallet.dat: The primary file used by Bitcoin Core to store private keys and other wallet
data.

HD Wallets: Bitcoin code supports Hierarchical Deterministic wallets, allowing for
streamlined backups.

BIPs: Bitcoin Improvement Proposals like BIP32 and BIP39 guide wallet structure and
mnemonic seed phrases.

RPC Calls: Developers can interact with wallets using Remote Procedure Calls like
createwallet or loadwallet.

Security: Wallet encryption in the code ensures safety against unauthorized access.



Managing Wallets: Creating, Loading,
Unloading

Creating Wallets: In Bitcoin Core, new wallets can be created using the createwallet RPC
command.

Loading Wallets: The loadwallet RPC command allows users to load an existing wallet
into the Bitcoin Core.

Unloading Wallets: To remove a wallet from memory, the unloadwallet RPC command is
utilized.

Wallet Management: Efficient wallet management ensures security and ease of access
for users.

Multiple Wallets: Bitcoin Core supports multiple wallets loaded simultaneously, each
isolated from the others.

Dynamic Operations: Wallets can be dynamically created, loaded, or unloaded without
restarting the Bitcoin node.



Bitcoin Address Generation



Address Types: P2PKH, P2SH, P2WPKH,
P2WSH

P2PKH (Pay-to-Public-Key-Hash): Traditional Bitcoin address type, starting with a 1.

P2SH (Pay-to-Script-Hash): Enables more complex transactions, addresses begin with a
3.

P2WPKH (Pay-to-Witness-Public-Key-Hash): A SegWit version of P2PKH, offering
reduced transaction fees.

P2WSH (Pay-to-Witness-Script-Hash): SegWit's answer to P2SH, allowing for larger
scripts.

Evolution of Addresses: As Bitcoin evolved, so did its address types to cater to different
needs.

Security and Efficiency: Each address type offers a balance between security, flexibility,
and efficiency.



Implementing Address Generation in
Bitcoin Code

Cryptographic Foundations: Bitcoin addresses are generated using ECDSA (Elliptic Curve
Digital Signature Algorithm).

Hash Functions: Two main hash functions, SHA-256 and RIPEMD-160, are used in
sequence.

Base58Check Encoding: Ensures the address is typo-resistant and non-confusing to
humans.

Hierarchical Deterministic (HD) Wallets: Allow generation of child addresses from a
single seed.

Address Versioning: Different prefixes denote different types of addresses (e.g., P2PKH
vs. P2SH).

SegWit Enhancements: SegWit addresses use bech32 encoding, improving error
detection.



Address Validation

Checksums: Bitcoin addresses include checksums to detect errors in the address.
Base58Check Decoding: Ensures the address hasn't been mistyped or altered.
Length Verification: Bitcoin addresses have a specific length based on their type.

Prefix Verification: Different address types have distinct prefixes (e.g., 1 for
P2PKH).

Hash Function Consistency: Re-hashing the public key should match the RIPEMD-
160 hash in the address.

SegWit Addresses: Use bech32 encoding which has built-in error detection.



The Bitcoin Mining Process



Understanding Proof-of-Work

Proof-of-Work (PoW): A consensus algorithm used by Bitcoin to validate transactions.
Computational Challenge: Miners solve cryptographic puzzles to add a new block.

Energy Intensive: PoW requires significant computational power, leading to high energy
consumption.

Security Mechanism: PoW prevents double-spending and secures the network against
attacks.

Block Rewards: Miners are rewarded with new bitcoins for solving the puzzle first.

Difficulty Adjustment: The network adjusts the puzzle's difficulty to ensure block time
remains roughly 10 minutes.



Implementing Mining in the Bitcoin Code

Mining Algorithm: Bitcoin uses the SHA-256 hashing algorithm in its mining
process.

Block Header: Miners work on the block header, containing metadata and a
reference to the previous block.

Nonce: A random value that miners change to find a hash that meets the
network's difficulty target.

Difficulty Target: A value set by the network that determines how challenging the
puzzle is to solve.

Mining Pools: Collaborative groups that combine computational power to
increase chances of mining a block.

Stratum Mining Protocol: A popular protocol used to facilitate communication
between miners and mining pools.



Difficulty Adjustment and Block Rewards

Difficulty Adjustment: Every 2016 blocks, Bitcoin adjusts its mining difficulty to ensure
block time remains close to 10 minutes.

Block Time: The average time it takes to mine and add a new block to the blockchain.

Block Rewards: Miners receive newly minted bitcoins and transaction fees as rewards
for validating and adding new blocks.

Halving Event: Approximately every four years, the block reward is halved, reducing the
new bitcoins created and earned by miners.

Network Security: Block rewards incentivize miners, ensuring network stability and
security against attacks.

Code Implementation: Both difficulty adjustment and block rewards are hard-coded into
the Bitcoin protocol, ensuring predictable operations.



Network Security



Handling Denial-of-Service Attacks

Denial-of-Service (DoS) Attacks: Malicious attempts to overwhelm a network or service,
rendering it inaccessible.

Bitcoin's Vulnerability: As a decentralized system, Bitcoin is a potential target for DoS
attacks aiming to disrupt its operation.

Ban Mechanism: Bitcoin nodes can ban misbehaving peers, reducing the impact of
malicious nodes.

Rate Limiting: Nodes limit the number of connection requests from unknown peers to
prevent flooding.

Memory Pool Limits: Bitcoin sets a cap on unconfirmed transactions, preventing spam
transactions from clogging the network.

Code Resilience: Continuous updates and patches in the Bitcoin codebase enhance
security against evolving threats.



Addressing Double Spending Issues

Double Spending: The risk of a single unit of currency being spent multiple times,
undermining the system's trust.

Bitcoin's Solution: Utilizes a decentralized ledger (the blockchain) to verify and record
transactions.

Transaction Confirmations: Multiple confirmations ensure a transaction is irreversible,
reducing double spend potential.

Longest Chain Rule: Bitcoin follows the longest blockchain to determine transaction
validity and prevent double spends.

Network Consensus: Nodes in the network agree on the state of the blockchain, making
unauthorized changes difficult.

Security Measures: Cryptographic signatures and proof-of-work further deter malicious
actors from double spending.



Bitcoin's Defense Mechanisms in Code

Cryptographic Signatures: Ensure that transactions are authentic and initiated by the
rightful owner.

Proof-of-Work (PoW): Miners solve complex problems to validate transactions and add
them to the blockchain.

Decentralization: The distributed nature of Bitcoin makes it resistant to single points of
failure or attacks.

Rate Limiting: Prevents network spam by requiring fees for transactions, discouraging
malicious actors.

Node Policy: Nodes can reject transactions or blocks that don't adhere to the network's
rules.

Merkle Trees: Efficiently verify the contents of large data blocks, ensuring data integrity.



Transaction Mempool



Understanding the Mempool

Mempool Definition: A temporary storage area for transactions awaiting confirmation.
Dynamic Nature: The mempool's size and content fluctuate based on network activity.

Transaction Fees: Transactions with higher fees are typically prioritized for faster
confirmation.

Node Variation: Each node has its own mempool, leading to slight differences across the
network.

Transaction Eviction: Transactions might be dropped if the mempool is full or.if they
remain unconfirmed for too long.

Importance: Acts as a buffer before transactions are added to a block and ensures
network efficiency.



Implementing Mempool in the Bitcoin
Code

Data Structure: The mempool is implemented as a set of transaction data in the Bitcoin
code.

Prioritization: Code logic prioritizes transactions based on fee rates and transaction age.

Mempool Acceptance Rules: Transactions must adhere to specific criteria to be
accepted into the mempool.

Eviction Policies: The code contains mechanisms to remove low-fee or. long-waiting
transactions.

Synchronization: Nodes share mempool data to maintain a somewhat consistent view
across the network.

Monitoring Tools: Developers can use RPC calls to inspect and interact with the
mempool.



Mempool Management and Policy

Dynamic Memory Usage: The Bitcoin mempool adjusts its memory footprint based on
transaction volume.

Fee Policies: Transactions with higher fees are prioritized, ensuring incentivization for
miners.

Size Limitations: The mempool has a maximum size to prevent overloading and maintain
efficiency.

Transaction Replacement: Some transactions can be replaced by those with higher fees
using RBF (Replace-By-Fee).

Expiration Time: Transactions that remain unconfirmed for too long are evicted from the
mempool.

Peer Relay Policies: Nodes have policies on relaying transactions to maintain network
health.



The Peer Discovery Mechanism



Understanding Peer Discovery

Initial Seed Nodes: When a node starts, it connects to known seed nodes to get a list of
active peers.

Address Messages (addr): Nodes share address messages to inform about other nodes
in the network.

Node Lifespan: Not all nodes are permanent; some are ephemeral, lasting only for short
durations.

Peer Exchange (PEX): A method where nodes exchange information about their known
peers.

DNS Seeds: Some nodes use DNS lookup to find peers by querying specific domain
names.

Continuous Discovery: Nodes continuously seek out new peers to maintain a robust
network connection.



Implementing Peer Discovery in Bitcoin
Code

Hardcoded Seeds: Bitcoin code contains initial seed nodes to kickstart the discovery
process.

getaddr & addr Messages: Nodes use getaddr to request peer addresses and addr to
share them.

Dynamic Peer Discovery: Over time, nodes build and update their list of peers through
continuous communication.

Bucketing System: To avoid centralization, addresses are bucketed based on their source.

Timestamping: Each peer address has a timestamp to help nodes determine its
HES T

Connection Retries: If a node fails to connect, the Bitcoin code implements retry logic to
ensure robustness.



Peer Scoring and Ban Mechanism

Peer Scoring: Nodes evaluate the behavior of their peers and assign scores based on
their actions.

Misbehavior Threshold: If a node's score exceeds a certain threshold, it's considered
misbehaving.

Ban Mechanism: Nodes that consistently misbehave can be banned for a specific
duration.

Banlist: A list maintained by nodes to keep track of banned peers and prevent
reconnection.

Decentralized Trust: Peer scoring promotes a trustless system where nodes hold each
other accountable.

Dynamic Adjustments: The Bitcoin code allows for periodic resetting of scores and re-
evaluation of bans.



The Bitcoin Consensus
Mechanism



Nakamoto Consensus Explained

Nakamoto Consensus: A decentralized decision-making process introduced by Satoshi
Nakamoto.

Proof-of-Work (PoW): The backbone of Nakamoto Consensus, ensuring security and
fairness.

Longest Chain Rule: The blockchain with the most work done is considered the valid
chain.

Decentralization: Ensures no single entity has control over the network's decision-
making.

Double Spending: Nakamoto Consensus prevents this by validating the first transaction
seen.

Network Agreement: Nodes agree on the state of the blockchain, ensuring integrity and
trust.



Consensus Implementation in Bitcoin Code

* Consensus Rules: Hard-coded set of rules in Bitcoin software ensuring all nodes agree on
the blockchain's state.

» Validation Process: Nodes verify each transaction against the consensus rules before
acceptance.

e Soft Forks vs. Hard Forks: Changes to consensus rules can lead to soft or hard forks,
depending on backward compatibility.

* Version Bits: A mechanism allowing miners to signal their support for proposed soft fork
changes.

* Chain Reorganization: When a node discovers a longer valid chain, it switches, ensuring
network agreement.

* Decentralized Nature: Bitcoin's code ensures no single entity can alter consensus rules
unilaterally.



Block Propagation and Orphan Blocks

Block Propagation: The process by which new blocks are broadcasted to the entire
Bitcoin network.

Orphan Blocks: Blocks that are discarded from the blockchain due to a longer competing
chain.

Latency Issues: Delays in block propagation can lead to multiple miners solving a block
simultaneously.

Block Relay Network: A system that optimizes block transmission to reduce propagation
delays.

Chain Reorganization: Occurs when the network adopts a longer chain, making previous
blocks orphaned.

Security Implications: Rapid block propagation is crucial to prevent double-spending and
maintain network integrity.



Bitcoin Test Framework



Overview of Bitcoin's Test Suite

Bitcoin Test Suite: A collection of automated tests ensuring the Bitcoin codebase
functions correctly.

Unit Tests: Focus on individual components of the software to validate each part works
as intended.

Functional Tests: Examine the end-to-end functionality of the Bitcoin system, ensuring
all parts work in harmony.

Regression Tests: Identify if changes introduce new bugs or reintroduce old ones to the
system.

Continuous Integration (ClI): An automated system that runs tests whenever changes are
made to the codebase.

Importance: Rigorous testing ensures the security and reliability of the Bitcoin network
and its transactions.



Writing Unit Tests for Bitcoin Core

Unit Tests: Specific tests targeting individual functions or components within the Bitcoin
Core.

Purpose: Ensure that each function behaves exactly as intended, catching any anomalies
early.

Test Coverage: A measure indicating the percentage of code that is tested, aiming for
high coverage to ensure reliability.

Isolation: Unit tests are designed to test functions independently, without external
dependencies or interactions.

Mocking: A technigue to simulate external components or systems, allowing for
controlled testing environments.

Automated Testing: Unit tests are often run automatically with every code change,
ensuring continuous quality assurance.



Functional Tests and Test Coverage

Functional Tests: Examine the entire system's behavior to ensure it meets specified
requirements.

End-to-End Testing: Functional tests often simulate real-world scenarios to validate the
system's overall performance.

Test Coverage: Represents the percentage of code that is tested, aiming for
comprehensive coverage to ensure robustness.

Regression Testing: Ensures that new code changes haven't negatively impacted existing
functionalities.

Continuous Integration (Cl): Automated process where code changes are immediately
tested, ensuring consistent code quality.

Importance: High test coverage and functional tests ensure the integrity and security of
the Bitcoin network.



Handling RPC Commands



Understanding RPC Interface

RPC (Remote Procedure Call): A protocol that allows execution of code on a remote
server, used extensively in Bitcoin.

Bitcoin's RPC Interface: Enables interaction with the Bitcoin node, facilitating tasks like
querying balances or sending transactions.

JSON-RPC: Bitcoin uses this lightweight data-interchange format for structured data
communication between client and server.

Authentication: Ensures that only authorized users can send commands to the Bitcoin
node.

Versatility: RPC commands range from basic queries to intricate administrative
operations.

Importance: Provides a gateway for developers and administrators to interact directly
with the Bitcoin protocol.



Implementing RPC Commands in Bitcoin
Code

RPC Implementation: In Bitcoin, the source code contains specific functions dedicated to
handling RPC calls.

rpc/server.cpp: The primary file where RPC server operations are defined and managed.

Command Registration: New RPC commands are registered using the CRPCCommand
class.

Parameter Handling: Commands can have multiple parameters, which are parsed and
validated before execution.

Error Handling: Proper mechanisms are in place to handle errors and provide meaningful
feedback.

Extensibility: Bitcoin's RPC framework is designed to be modular, allowing developers to
add new commands with ease.



Common RPC Commands and Their
Usage

» getinfo: Retrieves an overview of the node's status, including version, balance,
and network info.

sendtoaddress: Allows users to transfer bitcoins to a specified address.

getblock: Fetches a block's details using its hash, revealing transactions and
metadata.

e listunspent: Displays unspent transaction outputs (UTXOs) available for
spending.

validateaddress: Checks if a Bitcoin address is valid and provides related details.

» getpeerinfo: Offers insights into connected peers, including IP, version, and
latency.



Segregated Witness (SegWit)



Understanding Seg Wit

SegWit: A protocol upgrade that separates the witness data from transaction data.

Transaction Malleability: SegWit addresses this issue, ensuring transaction IDs remain
consistent before and after confirmation.

Block Capacity: SegWit effectively increases the block size limit, allowing more
transactions per block.

Lightning Network: SegWit's malleability fix enables second-layer solutions like the
Lightning Network.

Backward Compatibility: SegWit is a soft fork, meaning it's compatible with older
versions of Bitcoin software.

Adoption: Since its introduction, SegWit adoption has grown, leading to faster and
cheaper transactions.



Implementing SegWit in the Bitcoin Code

Codebase Integration: SegWit was introduced in Bitcoin Core 0.13.1, enhancing the
protocol's scalability.

Witness Data: SegWit separates the signature data (witness) from the main transaction
data.

P2WPKH & P2WSH: New transaction types introduced with SegWit to support its
functionality.

Weight Units: A new measurement for block size, ensuring blocks remain below the 4
million weight unit limit.

Witness Commitment: A hash of all withess data is included in the coinbase transaction
for block validation.

Network Relay: SegWit transactions are relayed through the network differently,
optimizing bandwidth.



Impact of SegWit on Transactions and
Blocks

Transaction Malleability Fix: SegWit addresses the malleability issue, allowing for more
secure Layer 2 solutions.

Increased Block Capacity: SegWit effectively increases the block size without changing
the block size limit.

Fee Reduction: Seg\Wit transactions often result in lower fees due to their reduced size.
Signature Data: By segregating the witness data, transactions become more lightweight.

Scalability Enhancement: SegWit paves the way for further scalability solutions like the
Lightning Network.

Uptake and Adoption: Over time, a significant portion of transactions on the network
have become SegWit-enabled.



The Bitcoin Serialization
Process



Understanding Serialization in Bitcoin

Definition: Serialization is the process of converting complex data structures into a byte
stream.

Purpose: Serialization in Bitcoin ensures data consistency across different network
nodes.

Compact Storage: Serialized data allows for efficient storage and retrieval in the
blockchain.

Transaction Verification: Serialization aids in hash generation for transaction verification.

Network Communication: Serialized data is used for peer-to-peer communication in the
Bitcoin network.

Deserialization: The reverse process, turning byte streams back into their original data
structures for processing and validation.



Implementing Serialization in Bitcoin
Code

Serialization Functions: Bitcoin code has specific functions dedicated to converting data
structures to byte streams.

Data Types: Different data types in Bitcoin, like transactions and blocks, have unique
serialization methods.

Consistency: Proper serialization ensures network-wide consistency and aids in data
validation.

Varint Encoding: Bitcoin uses Varint encoding for integers to save space and maintain
efficiency.

Hexadecimal Representation: Serialized data is often represented in hexadecimal for
readability and debugging.

Deserialization: Bitcoin code also contains functions to deserialize data, converting byte
streams back to original structures.



Deserialization and Its Role

Deserialization Defined: Deserialization is the process of converting a byte stream back
into its original data structure.

Network Communication: Deserialization is crucial for nodes to interpret and validate
data received from other nodes.

Data Integrity: Proper deserialization ensures the accuracy and integrity of data
structures in the Bitcoin network.

Error Handling: Bitcoin's deserialization functions include checks to handle potential
errors or malicious data.

Efficiency: Deserialization is optimized for speed, ensuring timely processing of large
volumes of data.

Complement to Serialization: While serialization prepares data for storage or
transmission, deserialization readies it for processing and validation.



Bitcoin Forks and Code
Modifications



Understanding Soft and Hard Forks

Soft Fork Defined: A soft fork introduces backward-compatible changes, meaning new
rules are a subset of the old rules.

Hard Fork Defined: A hard fork introduces changes that are not backward-compatible,
requiring all nodes to upgrade.

Network Consensus: Both soft and hard forks aim to achieve network consensus but
approach it differently.

Upgrade Decisions: While soft forks require only miners to upgrade, hard forks
necessitate all participants to make changes.

Potential Splits: Hard forks can lead to chain splits if not all participants agree on the
changes.

Importance of Communication: Prior to any fork, clear communication within the
community is crucial to ensure smooth transitions.



Fork Implementation in Bitcoin Code

Versioning Control: Bitcoin code uses BIP9 for signaling readiness for soft forks among
miners.

Activation Threshold: A specific percentage of miners must signal readiness before a
soft fork is activated.

Hard Forks: Implementing hard forks requires explicit code changes and broad
consensus in the community.

Replay Protection: For hard forks, replay protection ensures transactions are valid on
one chain but not on another.

Code Review: All proposed forks undergo rigorous peer review before being merged into
the main codebase.

Historical Forks: Bitcoin has seen several forks, like the SegWit2x proposal, which was
eventually abandoned.



Major Forks in Bitcoin History

Bitcoin Cash (BCH): A hard fork from Bitcoin in 2017, increasing the block size to 8MB.

Bitcoin Gold (BTG): Introduced in 2017, it aimed to decentralize mining by using a
different algorithm.

SegWit (Segregated Witness): A soft fork in 2017, it increased block capacity and fixed
transaction malleability.

Bitcoin SV (BSV): A contentious hard fork from Bitcoin Cash in 2018, focusing on larger
block sizes.

Bitcoin XT & Bitcoin Classic: Earlier attempts to increase block size, but didn't gain
enough support.

Taproot Upgrade: A soft fork in 2021, it improved privacy, scalability, and introduced
new scripting capabilities.



The Bitcoin Core GUI



The Bitcoin Qt Client

Bitcoin Qt: The original software written by Bitcoin's creator, Satoshi Nakamoto.

Graphical User Interface (GUI): Provides a user-friendly way to interact with the
Bitcoin network.

Full Node Operation: Bitcoin Qt allows users to run a full node, validating
transactions and blocks.

Wallet Functionality: Users can send, receive, and store Bitcoin directly from the
client.

Customizable Settings: Offers advanced settings for network, blockchain, and
mining preferences.

Open-Source: Anyone can review, modify, or contribute to the Bitcoin Qt
codebase.



Understanding the GUI Code

* Qt Framework: The foundation for Bitcoin's GUI, providing tools for creating
interactive user interfaces.

 Source Directory: GUI code is primarily located in the src/qt directory of the
Bitcoin Core repository.

* Main Window: The bitcoin.cpp file defines the main window and its interactions.

* Dialogs and Forms: GUI elements like transaction forms and address books are
defined in separate .ui files.

 Signal-Slot Mechanism: Enables communication between GUl components,
ensuring responsive user interactions.

* Threading: The GUI operates on a separate thread to maintain responsiveness
despite intensive blockchain operations.



Customizing the GUI

* Qt Stylesheets: Enable styling of GUI elements, similar to CSS for web interfaces.

* Themes: Bitcoin Core supports multiple themes allowing users to personalize
their experience.

* Localization: GUI supports multiple languages, ensuring global accessibility.

» Resizable Elements: Users can adjust the size of panels and windows for a
tailored view.

* Configuration Files: Advanced users can tweak the GUI through bitcoin.conf
settings.

* Plugins and Extensions: Modular design allows for add-ons to enhance GUI
functionality.



Contribute to Bitcoin Core
Development



Understanding the Bitcoin Improvement
Proposal (BIP) Process

 Bitcoin Improvement Proposals (BIPs): Formal documents for introducing
features or changes to Bitcoin.

BIP Types: Three main categories - Standards Track, Informational, and Process
BIPs.

BIP Lifecycle: Proposals undergo stages - Draft, Proposed, Final, and Rejected.

Community Consensus: BIPs require community feedback and consensus before
implementation.

BIP Editors: Designated individuals who manage and organize the BIPs.

BIP Numbering: Each BIP is assigned a unique number for tracking and reference.



Coding Guidelines and Best Practices

e Coding Standards: Adherence to a consistent coding style ensures readability and
maintainability.

* Documentation: Proper comments and documentation aid future developers
and reviewers.

Testing: Every change should come with tests to ensure stability and prevent
regressions.

* Peer Review: Submitted code undergoes rigorous review by other developers for
quality assurance.

* Performance: Optimize for efficiency but prioritize clarity and correctness in the
code.

* Security: Always prioritize security to protect the network and its users.



Making a Pull Request and Peer Review
Process

Pull Request (PR): A proposal to merge new code or changes into the main codebase.
Commit Messages: Clear and concise messages help reviewers understand the changes.

Continuous Integration (ClI): Automated tests run to ensure code compatibility and
stability.

Feedback Loop: Developers provide feedback, and contributors make necessary
revisions.

Consensus: Merging requires agreement from maintainers and active contributors.

Iterative Process: PRs often undergo multiple rounds of review and revision before
merging.



	Slide 1: Bitcoin Code
	Slide 2: Introduction to the Bitcoin Source Code
	Slide 3: Overview and Historical Context
	Slide 4: Core Components of Bitcoin Code
	Slide 5: Setting up the Bitcoin Development Environment
	Slide 6: The Bitcoin Core Architecture
	Slide 7: Understanding the Bitcoin Repository Structure
	Slide 8: Important Files and Their Purpose
	Slide 9: The Bitcoin Core Daemon: bitcoind
	Slide 10: Bitcoin Protocol and Network Communication
	Slide 11: The Peer-to-Peer Network
	Slide 12: Message Types and Communication Protocol
	Slide 13: The Bitcoin's P2P Code
	Slide 14: The Blockchain Data Structure
	Slide 15: Understanding the Block Structure
	Slide 16: Implementing Blocks in Bitcoin Code
	Slide 17: Block Validation and the Chainstate Database
	Slide 18: Transactions in the Bitcoin Code
	Slide 19: Understanding the Transaction Structure
	Slide 20: Implementing Transactions in the Bitcoin Code
	Slide 21: Transaction Validation
	Slide 22: Scripting and Smart Contracts
	Slide 23: Understanding Bitcoin Script
	Slide 24: Bitcoin Script Opcodes
	Slide 25: Implementing Script in the Bitcoin Code
	Slide 26: Handling Wallets
	Slide 27: The Bitcoin Wallet: Purpose and Structure
	Slide 28: Implementing Wallets in Bitcoin Code
	Slide 29: Managing Wallets: Creating, Loading, Unloading
	Slide 30: Bitcoin Address Generation
	Slide 31: Address Types: P2PKH, P2SH, P2WPKH, P2WSH
	Slide 32: Implementing Address Generation in Bitcoin Code
	Slide 33: Address Validation
	Slide 34: The Bitcoin Mining Process
	Slide 35: Understanding Proof-of-Work
	Slide 36: Implementing Mining in the Bitcoin Code
	Slide 37: Difficulty Adjustment and Block Rewards
	Slide 38: Network Security
	Slide 39: Handling Denial-of-Service Attacks
	Slide 40: Addressing Double Spending Issues
	Slide 41: Bitcoin's Defense Mechanisms in Code
	Slide 42: Transaction Mempool
	Slide 43: Understanding the Mempool
	Slide 44: Implementing Mempool in the Bitcoin Code
	Slide 45: Mempool Management and Policy
	Slide 46: The Peer Discovery Mechanism
	Slide 47: Understanding Peer Discovery
	Slide 48: Implementing Peer Discovery in Bitcoin Code
	Slide 49: Peer Scoring and Ban Mechanism
	Slide 50: The Bitcoin Consensus Mechanism
	Slide 51: Nakamoto Consensus Explained
	Slide 52: Consensus Implementation in Bitcoin Code
	Slide 53: Block Propagation and Orphan Blocks
	Slide 54: Bitcoin Test Framework
	Slide 55: Overview of Bitcoin's Test Suite
	Slide 56: Writing Unit Tests for Bitcoin Core
	Slide 57: Functional Tests and Test Coverage
	Slide 58: Handling RPC Commands
	Slide 59: Understanding RPC Interface
	Slide 60: Implementing RPC Commands in Bitcoin Code
	Slide 61: Common RPC Commands and Their Usage
	Slide 62: Segregated Witness (SegWit)
	Slide 63: Understanding SegWit
	Slide 64: Implementing SegWit in the Bitcoin Code
	Slide 65: Impact of SegWit on Transactions and Blocks
	Slide 66: The Bitcoin Serialization Process
	Slide 67: Understanding Serialization in Bitcoin
	Slide 68: Implementing Serialization in Bitcoin Code
	Slide 69: Deserialization and Its Role
	Slide 70: Bitcoin Forks and Code Modifications
	Slide 71: Understanding Soft and Hard Forks
	Slide 72: Fork Implementation in Bitcoin Code
	Slide 73: Major Forks in Bitcoin History
	Slide 74: The Bitcoin Core GUI
	Slide 75: The Bitcoin Qt Client
	Slide 76: Understanding the GUI Code
	Slide 77: Customizing the GUI
	Slide 78: Contribute to Bitcoin Core Development
	Slide 79: Understanding the Bitcoin Improvement Proposal (BIP) Process
	Slide 80: Coding Guidelines and Best Practices
	Slide 81: Making a Pull Request and Peer Review Process

