
Bitcoin Code
Lesson 1: Advanced

By Thomas Numnum



Introduction to the Bitcoin 
Source Code



Overview and Historical Context

• Bitcoin was created by an anonymous person or group of people using the 
pseudonym Satoshi Nakamoto.

• The source code for Bitcoin was released in 2009, marking the start of 
decentralized cryptocurrencies.

• Bitcoin's code is open-source, meaning anyone can view, copy, or modify it.

• The Bitcoin protocol is defined by this code, which sets the rules for how the 
Bitcoin network operates.

• Historically, Bitcoin's code has undergone numerous revisions and updates to 
improve security and functionality.

• The genesis block, the first block in the Bitcoin blockchain, was mined by 
Nakamoto in 2009.



Core Components of Bitcoin Code

• Bitcoin Core: The reference client and the main software used to run Bitcoin 
nodes.

• Blockchain: The decentralized ledger that records all Bitcoin transactions, 
implemented in the code.

• Proof-of-Work Algorithm: The consensus mechanism used by Bitcoin to validate 
and add transactions to the blockchain.

• Cryptographic Functions: Essential for creating addresses, forming transactions, 
and ensuring security.

• P2P Network Protocol: Allows nodes to communicate with each other, sharing 
transaction and block data.

• Wallet Implementation: Enables users to store, send, and receive bitcoins.



Setting up the Bitcoin Development 
Environment

• Git Repository: The primary source for obtaining the latest Bitcoin code, frequently 
updated by contributors.

• Dependencies: Essential libraries and software required to compile and run the Bitcoin 
software.

• Bitcoin Build System: A set of scripts and configurations to compile the Bitcoin source 
code.

• Configuration Files: Allow customization of node behavior, including setting network 
parameters and logging.

• Test Framework: An integral part of the codebase, ensuring the stability and security of 
updates.

• Documentation: Guides and READMEs that assist developers in understanding and 
contributing to the project.



The Bitcoin Core Architecture



Understanding the Bitcoin Repository 
Structure

• src Folder: Contains the main implementation files and is the heart of the Bitcoin 
Core software.

• test Folder: Dedicated to unit tests, ensuring code reliability and security.

• doc Folder: Houses documentation, offering guidelines and explanations for 
developers.

• contrib Folder: Contains scripts and data pertinent to Bitcoin but not part of the 
core code.

• binaries (bin) Folder: Where compiled executables reside after the build process.

• Dependencies Folder: Stores external libraries and tools that Bitcoin relies on for 
various functions.



Important Files and Their Purpose

• bitcoin.cpp: The main entry point for the Bitcoin Core software, initializing key 
components.

• net.h & net.cpp: Define the networking protocols and handle peer-to-peer connections.

• chain.h & chain.cpp: Manage the blockchain structure, including block validation and 
storage.

• wallet.h & wallet.cpp: Oversee wallet functionality, from key management to 
transaction creation.

• script.h & script.cpp: Handle scripting capabilities, enabling complex transaction types.

• consensus.h & consensus.cpp: Establish the consensus rules, ensuring network 
agreement on valid transactions.



The Bitcoin Core Daemon: bitcoind

• bitcoind: The command-line daemon version of the Bitcoin software, allowing for 
headless operation.

• Enables server-based operations without the need for a graphical interface.

• RPC interface: Allows developers to interact and send commands to the Bitcoin 
network.

• Configuration: Users can customize settings via the bitcoin.conf file for tailored 
operations.

• Logging: bitcoind provides detailed logs for troubleshooting and monitoring 
network interactions.

• Essential for infrastructure projects where GUI isn't necessary or desired.



Bitcoin Protocol and Network 
Communication



The Peer-to-Peer Network

• Peer-to-Peer (P2P): A decentralized network where participants communicate directly 
without intermediaries.

• Nodes: Individual computers on the P2P network that validate and relay transactions.

• Decentralization: Bitcoin's P2P network ensures no single point of failure or control.

• Gossip Protocol: Used to propagate transactions and blocks to every node in the 
network.

• Security: The P2P structure makes the Bitcoin network resistant to censorship and 
external attacks.

• Network Health: The more nodes, the healthier, more robust, and decentralized the 
network becomes.



Message Types and Communication 
Protocol

• Message Types: Specific packets of data exchanged between nodes to relay 
information.

• Version Message: Announces a node to the network and shares version 
information.

• Inv Message: Used to advertise the availability of a transaction or block.

• GetData Message: A request for a specific piece of data, like a transaction 
or block.

• Tx Message: Relays individual transaction data across the network.

• Block Message: Shares block data, crucial for blockchain synchronization.



The Bitcoin's P2P Code

• P2P Code: The backbone of Bitcoin's decentralized network, enabling direct 
node-to-node communication.

• Decentralization: Bitcoin's P2P code ensures no central authority, making the 
network censorship-resistant.

• Node Discovery: P2P code facilitates the discovery of other nodes, ensuring 
network robustness.

• Data Propagation: Efficiently spreads transactions and blocks across the entire 
network.

• Ban Mechanism: Nodes can ban misbehaving peers, ensuring network integrity.

• Network Scalability: P2P code allows the network to scale and handle increasing 
numbers of nodes.



The Blockchain Data Structure



Understanding the Block Structure

• Block Header: Contains metadata about the block, including the previous block's 
hash.

• Timestamp: Records when the block was created, ensuring chronological order.

• Merkle Root: A cryptographic hash of all transactions in the block, ensuring data 
integrity.

• Nonce: A value used in proof-of-work, crucial for block validation and mining.

• Transaction Counter: Indicates the number of transactions within the block.

• Transaction List: A detailed list of all transactions included in the block.



Implementing Blocks in Bitcoin Code

• C++ Implementation: Bitcoin's core code is primarily written in C++.

• Block Class: Defines the structure and methods associated with a block.

• Hash Function: Utilizes SHA-256 to generate a unique identifier for each 
block.

• Proof-of-Work: Implemented within the block class to validate and mine 
new blocks.

• Serialization: Allows blocks to be converted into a format suitable for 
network transmission.

• Chainstate: Represents the current state of the blockchain, ensuring blocks 
are added correctly.



Block Validation and the Chainstate 
Database

• Block Validation: Ensures the integrity and authenticity of each block 
before addition to the blockchain.

• Consensus Rules: Set of protocols that every block must adhere to for 
acceptance.

• Chainstate Database: Stores the latest state of the Bitcoin blockchain.

• UTXO Set: Represents the unspent transaction outputs, crucial for 
validating new transactions.

• LevelDB: The database technology used to manage the Chainstate.

• Reorganization: A process where the blockchain may switch to a longer 
chain, ensuring consensus.



Transactions in the Bitcoin 
Code



Understanding the Transaction Structure

• Transaction Components: Every Bitcoin transaction consists of inputs, outputs, 
and a timestamp.

• Inputs: Refer to the source of bitcoins, typically from previous transactions' 
outputs.

• Outputs: Define the new owner of the bitcoins and the amount transferred.

• ScriptSig and ScriptPubKey: Cryptographic scripts ensuring only the rightful 
owner can spend the bitcoins.

• Transaction ID (TXID): A unique identifier generated from the transaction's 
details.

• Locktime: Specifies the earliest time a transaction can be added to the 
blockchain.



Implementing Transactions in the Bitcoin 
Code

• Transaction Creation: In the Bitcoin code, transactions are initiated by creating a new 
CTransaction object.

• Signature Generation: For transaction validation, a cryptographic signature is generated 
using the user's private key.

• UTXO Set: Transactions reference the Unspent Transaction Output (UTXO) set to 
determine available funds.

• Validation Process: Before being added to the blockchain, each transaction undergoes 
rigorous validation checks.

• Mempool: Once validated, transactions await in the memory pool (mempool) before 
being mined into a block.

• Fee Calculation: Transaction fees are determined based on transaction size and network 
congestion.



Transaction Validation

• Signature Verification: Every transaction must have its cryptographic signature verified
to ensure authenticity.

• Double Spending: The Bitcoin code checks to prevent double spending, ensuring coins 
aren't used twice.

• Reference to UTXO: Transactions must reference a valid Unspent Transaction Output to 
be considered legitimate.

• Script Evaluation: Bitcoin employs a scripting system for transactions, which is evaluated 
during validation.

• Consensus Rules: All transactions must adhere to the network's consensus rules to 
maintain uniformity.

• Mempool Acceptance: Valid transactions are added to the mempool, awaiting inclusion 
in a future block.



Scripting and Smart Contracts



Understanding Bitcoin Script

• Stack-based Language: Bitcoin Script is a simple, stack-based programming language.

• Non-Turing Complete: Unlike Ethereum's Solidity, Bitcoin Script is non-Turing complete, 
limiting its complexity.

• Unlocking Funds: The primary purpose is to specify conditions for unlocking bitcoins in a 
transaction output.

• OP_CODES: Bitcoin Script uses various operation codes (OP_CODES) to define 
transaction rules.

• P2SH Transactions: Pay-to-Script-Hash (P2SH) allows more complex transaction types, 
expanding Bitcoin's flexibility.

• Safety Measures: Certain OP_CODES are disabled to prevent potential vulnerabilities in 
the network.



Bitcoin Script Opcodes

• Definition: Opcodes are the individual commands or functions in Bitcoin Script.

• Variety: There are over 100 different opcodes, each with a unique purpose.

• Disabled Opcodes: Some opcodes were disabled for security reasons in Bitcoin's 
early days.

• Stack Manipulation: Opcodes like OP_DUP and OP_SWAP manage the stack's 
data.

• Arithmetic Operations: Opcodes such as OP_ADD and OP_SUB perform basic 
math.

• Crypto Functions: Opcodes like OP_CHECKSIG validate cryptographic signatures.



Implementing Script in the Bitcoin Code

• Definition: Bitcoin Script is a stack-based, non-Turing complete scripting language.

• Purpose: Script defines the conditions under which a transaction output can be spent.

• File Location: The main implementation is found in the script.cpp and script.h files.

• Interpreter: Bitcoin uses an interpreter to execute and validate scripts in transactions.

• SigOps Count: Bitcoin limits the number of signature operations in a block for network 
protection.

• Flexibility: While limited, Script allows for various custom transaction types beyond 
simple transfers.



Handling Wallets



The Bitcoin Wallet: Purpose and Structure

• Definition: A Bitcoin wallet is a digital tool that allows users to manage their 
bitcoin holdings.

• Key Storage: Wallets securely store private keys, which are essential for signing 
transactions.

• Types: There are various wallet types, including hardware, software, and paper
wallets.

• Hierarchical Deterministic (HD) Wallets: These wallets generate keys from a 
single seed, ensuring easy backup.

• Functionality: Beyond storage, wallets facilitate sending and receiving bitcoins.

• Security: Wallets implement multiple layers of encryption and protection 
mechanisms.



Implementing Wallets in Bitcoin Code

• Definition: In Bitcoin code, a wallet is a collection of keypairs and transactions
associated with those keys.

• Wallet.dat: The primary file used by Bitcoin Core to store private keys and other wallet 
data.

• HD Wallets: Bitcoin code supports Hierarchical Deterministic wallets, allowing for 
streamlined backups.

• BIPs: Bitcoin Improvement Proposals like BIP32 and BIP39 guide wallet structure and 
mnemonic seed phrases.

• RPC Calls: Developers can interact with wallets using Remote Procedure Calls like 
createwallet or loadwallet.

• Security: Wallet encryption in the code ensures safety against unauthorized access.



Managing Wallets: Creating, Loading, 
Unloading

• Creating Wallets: In Bitcoin Core, new wallets can be created using the createwallet RPC 
command.

• Loading Wallets: The loadwallet RPC command allows users to load an existing wallet 
into the Bitcoin Core.

• Unloading Wallets: To remove a wallet from memory, the unloadwallet RPC command is 
utilized.

• Wallet Management: Efficient wallet management ensures security and ease of access
for users.

• Multiple Wallets: Bitcoin Core supports multiple wallets loaded simultaneously, each 
isolated from the others.

• Dynamic Operations: Wallets can be dynamically created, loaded, or unloaded without 
restarting the Bitcoin node.



Bitcoin Address Generation



Address Types: P2PKH, P2SH, P2WPKH, 
P2WSH

• P2PKH (Pay-to-Public-Key-Hash): Traditional Bitcoin address type, starting with a 1.

• P2SH (Pay-to-Script-Hash): Enables more complex transactions, addresses begin with a 
3.

• P2WPKH (Pay-to-Witness-Public-Key-Hash): A SegWit version of P2PKH, offering 
reduced transaction fees.

• P2WSH (Pay-to-Witness-Script-Hash): SegWit's answer to P2SH, allowing for larger 
scripts.

• Evolution of Addresses: As Bitcoin evolved, so did its address types to cater to different 
needs.

• Security and Efficiency: Each address type offers a balance between security, flexibility,
and efficiency.



Implementing Address Generation in 
Bitcoin Code

• Cryptographic Foundations: Bitcoin addresses are generated using ECDSA (Elliptic Curve 
Digital Signature Algorithm).

• Hash Functions: Two main hash functions, SHA-256 and RIPEMD-160, are used in 
sequence.

• Base58Check Encoding: Ensures the address is typo-resistant and non-confusing to 
humans.

• Hierarchical Deterministic (HD) Wallets: Allow generation of child addresses from a 
single seed.

• Address Versioning: Different prefixes denote different types of addresses (e.g., P2PKH 
vs. P2SH).

• SegWit Enhancements: SegWit addresses use bech32 encoding, improving error 
detection.



Address Validation

• Checksums: Bitcoin addresses include checksums to detect errors in the address.

• Base58Check Decoding: Ensures the address hasn't been mistyped or altered.

• Length Verification: Bitcoin addresses have a specific length based on their type.

• Prefix Verification: Different address types have distinct prefixes (e.g., 1 for 
P2PKH).

• Hash Function Consistency: Re-hashing the public key should match the RIPEMD-
160 hash in the address.

• SegWit Addresses: Use bech32 encoding which has built-in error detection.



The Bitcoin Mining Process



Understanding Proof-of-Work

• Proof-of-Work (PoW): A consensus algorithm used by Bitcoin to validate transactions.

• Computational Challenge: Miners solve cryptographic puzzles to add a new block.

• Energy Intensive: PoW requires significant computational power, leading to high energy 
consumption.

• Security Mechanism: PoW prevents double-spending and secures the network against 
attacks.

• Block Rewards: Miners are rewarded with new bitcoins for solving the puzzle first.

• Difficulty Adjustment: The network adjusts the puzzle's difficulty to ensure block time 
remains roughly 10 minutes.



Implementing Mining in the Bitcoin Code

• Mining Algorithm: Bitcoin uses the SHA-256 hashing algorithm in its mining 
process.

• Block Header: Miners work on the block header, containing metadata and a 
reference to the previous block.

• Nonce: A random value that miners change to find a hash that meets the 
network's difficulty target.

• Difficulty Target: A value set by the network that determines how challenging the 
puzzle is to solve.

• Mining Pools: Collaborative groups that combine computational power to 
increase chances of mining a block.

• Stratum Mining Protocol: A popular protocol used to facilitate communication 
between miners and mining pools.



Difficulty Adjustment and Block Rewards

• Difficulty Adjustment: Every 2016 blocks, Bitcoin adjusts its mining difficulty to ensure 
block time remains close to 10 minutes.

• Block Time: The average time it takes to mine and add a new block to the blockchain.

• Block Rewards: Miners receive newly minted bitcoins and transaction fees as rewards 
for validating and adding new blocks.

• Halving Event: Approximately every four years, the block reward is halved, reducing the 
new bitcoins created and earned by miners.

• Network Security: Block rewards incentivize miners, ensuring network stability and 
security against attacks.

• Code Implementation: Both difficulty adjustment and block rewards are hard-coded into 
the Bitcoin protocol, ensuring predictable operations.



Network Security



Handling Denial-of-Service Attacks

• Denial-of-Service (DoS) Attacks: Malicious attempts to overwhelm a network or service, 
rendering it inaccessible.

• Bitcoin's Vulnerability: As a decentralized system, Bitcoin is a potential target for DoS 
attacks aiming to disrupt its operation.

• Ban Mechanism: Bitcoin nodes can ban misbehaving peers, reducing the impact of 
malicious nodes.

• Rate Limiting: Nodes limit the number of connection requests from unknown peers to 
prevent flooding.

• Memory Pool Limits: Bitcoin sets a cap on unconfirmed transactions, preventing spam 
transactions from clogging the network.

• Code Resilience: Continuous updates and patches in the Bitcoin codebase enhance 
security against evolving threats.



Addressing Double Spending Issues

• Double Spending: The risk of a single unit of currency being spent multiple times, 
undermining the system's trust.

• Bitcoin's Solution: Utilizes a decentralized ledger (the blockchain) to verify and record 
transactions.

• Transaction Confirmations: Multiple confirmations ensure a transaction is irreversible, 
reducing double spend potential.

• Longest Chain Rule: Bitcoin follows the longest blockchain to determine transaction 
validity and prevent double spends.

• Network Consensus: Nodes in the network agree on the state of the blockchain, making 
unauthorized changes difficult.

• Security Measures: Cryptographic signatures and proof-of-work further deter malicious 
actors from double spending.



Bitcoin's Defense Mechanisms in Code

• Cryptographic Signatures: Ensure that transactions are authentic and initiated by the 
rightful owner.

• Proof-of-Work (PoW): Miners solve complex problems to validate transactions and add 
them to the blockchain.

• Decentralization: The distributed nature of Bitcoin makes it resistant to single points of 
failure or attacks.

• Rate Limiting: Prevents network spam by requiring fees for transactions, discouraging 
malicious actors.

• Node Policy: Nodes can reject transactions or blocks that don't adhere to the network's 
rules.

• Merkle Trees: Efficiently verify the contents of large data blocks, ensuring data integrity.



Transaction Mempool



Understanding the Mempool

• Mempool Definition: A temporary storage area for transactions awaiting confirmation.

• Dynamic Nature: The mempool's size and content fluctuate based on network activity.

• Transaction Fees: Transactions with higher fees are typically prioritized for faster 
confirmation.

• Node Variation: Each node has its own mempool, leading to slight differences across the 
network.

• Transaction Eviction: Transactions might be dropped if the mempool is full or if they 
remain unconfirmed for too long.

• Importance: Acts as a buffer before transactions are added to a block and ensures 
network efficiency.



Implementing Mempool in the Bitcoin 
Code

• Data Structure: The mempool is implemented as a set of transaction data in the Bitcoin 
code.

• Prioritization: Code logic prioritizes transactions based on fee rates and transaction age.

• Mempool Acceptance Rules: Transactions must adhere to specific criteria to be 
accepted into the mempool.

• Eviction Policies: The code contains mechanisms to remove low-fee or long-waiting 
transactions.

• Synchronization: Nodes share mempool data to maintain a somewhat consistent view 
across the network.

• Monitoring Tools: Developers can use RPC calls to inspect and interact with the 
mempool.



Mempool Management and Policy

• Dynamic Memory Usage: The Bitcoin mempool adjusts its memory footprint based on 
transaction volume.

• Fee Policies: Transactions with higher fees are prioritized, ensuring incentivization for 
miners.

• Size Limitations: The mempool has a maximum size to prevent overloading and maintain 
efficiency.

• Transaction Replacement: Some transactions can be replaced by those with higher fees 
using RBF (Replace-By-Fee).

• Expiration Time: Transactions that remain unconfirmed for too long are evicted from the 
mempool.

• Peer Relay Policies: Nodes have policies on relaying transactions to maintain network 
health.



The Peer Discovery Mechanism



Understanding Peer Discovery

• Initial Seed Nodes: When a node starts, it connects to known seed nodes to get a list of 
active peers.

• Address Messages (addr): Nodes share address messages to inform about other nodes 
in the network.

• Node Lifespan: Not all nodes are permanent; some are ephemeral, lasting only for short 
durations.

• Peer Exchange (PEX): A method where nodes exchange information about their known 
peers.

• DNS Seeds: Some nodes use DNS lookup to find peers by querying specific domain 
names.

• Continuous Discovery: Nodes continuously seek out new peers to maintain a robust 
network connection.



Implementing Peer Discovery in Bitcoin 
Code

• Hardcoded Seeds: Bitcoin code contains initial seed nodes to kickstart the discovery 
process.

• getaddr & addr Messages: Nodes use getaddr to request peer addresses and addr to 
share them.

• Dynamic Peer Discovery: Over time, nodes build and update their list of peers through 
continuous communication.

• Bucketing System: To avoid centralization, addresses are bucketed based on their source.

• Timestamping: Each peer address has a timestamp to help nodes determine its 
freshness.

• Connection Retries: If a node fails to connect, the Bitcoin code implements retry logic to 
ensure robustness.



Peer Scoring and Ban Mechanism

• Peer Scoring: Nodes evaluate the behavior of their peers and assign scores based on 
their actions.

• Misbehavior Threshold: If a node's score exceeds a certain threshold, it's considered 
misbehaving.

• Ban Mechanism: Nodes that consistently misbehave can be banned for a specific 
duration.

• Banlist: A list maintained by nodes to keep track of banned peers and prevent 
reconnection.

• Decentralized Trust: Peer scoring promotes a trustless system where nodes hold each 
other accountable.

• Dynamic Adjustments: The Bitcoin code allows for periodic resetting of scores and re-
evaluation of bans.



The Bitcoin Consensus 
Mechanism



Nakamoto Consensus Explained

• Nakamoto Consensus: A decentralized decision-making process introduced by Satoshi 
Nakamoto.

• Proof-of-Work (PoW): The backbone of Nakamoto Consensus, ensuring security and 
fairness.

• Longest Chain Rule: The blockchain with the most work done is considered the valid
chain.

• Decentralization: Ensures no single entity has control over the network's decision-
making.

• Double Spending: Nakamoto Consensus prevents this by validating the first transaction
seen.

• Network Agreement: Nodes agree on the state of the blockchain, ensuring integrity and 
trust.



Consensus Implementation in Bitcoin Code

• Consensus Rules: Hard-coded set of rules in Bitcoin software ensuring all nodes agree on 
the blockchain's state.

• Validation Process: Nodes verify each transaction against the consensus rules before 
acceptance.

• Soft Forks vs. Hard Forks: Changes to consensus rules can lead to soft or hard forks, 
depending on backward compatibility.

• Version Bits: A mechanism allowing miners to signal their support for proposed soft fork 
changes.

• Chain Reorganization: When a node discovers a longer valid chain, it switches, ensuring 
network agreement.

• Decentralized Nature: Bitcoin's code ensures no single entity can alter consensus rules 
unilaterally.



Block Propagation and Orphan Blocks

• Block Propagation: The process by which new blocks are broadcasted to the entire 
Bitcoin network.

• Orphan Blocks: Blocks that are discarded from the blockchain due to a longer competing 
chain.

• Latency Issues: Delays in block propagation can lead to multiple miners solving a block 
simultaneously.

• Block Relay Network: A system that optimizes block transmission to reduce propagation 
delays.

• Chain Reorganization: Occurs when the network adopts a longer chain, making previous 
blocks orphaned.

• Security Implications: Rapid block propagation is crucial to prevent double-spending and 
maintain network integrity.



Bitcoin Test Framework



Overview of Bitcoin's Test Suite

• Bitcoin Test Suite: A collection of automated tests ensuring the Bitcoin codebase 
functions correctly.

• Unit Tests: Focus on individual components of the software to validate each part works 
as intended.

• Functional Tests: Examine the end-to-end functionality of the Bitcoin system, ensuring 
all parts work in harmony.

• Regression Tests: Identify if changes introduce new bugs or reintroduce old ones to the 
system.

• Continuous Integration (CI): An automated system that runs tests whenever changes are 
made to the codebase.

• Importance: Rigorous testing ensures the security and reliability of the Bitcoin network 
and its transactions.



Writing Unit Tests for Bitcoin Core

• Unit Tests: Specific tests targeting individual functions or components within the Bitcoin 
Core.

• Purpose: Ensure that each function behaves exactly as intended, catching any anomalies 
early.

• Test Coverage: A measure indicating the percentage of code that is tested, aiming for 
high coverage to ensure reliability.

• Isolation: Unit tests are designed to test functions independently, without external 
dependencies or interactions.

• Mocking: A technique to simulate external components or systems, allowing for 
controlled testing environments.

• Automated Testing: Unit tests are often run automatically with every code change, 
ensuring continuous quality assurance.



Functional Tests and Test Coverage

• Functional Tests: Examine the entire system's behavior to ensure it meets specified 
requirements.

• End-to-End Testing: Functional tests often simulate real-world scenarios to validate the 
system's overall performance.

• Test Coverage: Represents the percentage of code that is tested, aiming for 
comprehensive coverage to ensure robustness.

• Regression Testing: Ensures that new code changes haven't negatively impacted existing 
functionalities.

• Continuous Integration (CI): Automated process where code changes are immediately 
tested, ensuring consistent code quality.

• Importance: High test coverage and functional tests ensure the integrity and security of 
the Bitcoin network.



Handling RPC Commands



Understanding RPC Interface

• RPC (Remote Procedure Call): A protocol that allows execution of code on a remote 
server, used extensively in Bitcoin.

• Bitcoin's RPC Interface: Enables interaction with the Bitcoin node, facilitating tasks like 
querying balances or sending transactions.

• JSON-RPC: Bitcoin uses this lightweight data-interchange format for structured data 
communication between client and server.

• Authentication: Ensures that only authorized users can send commands to the Bitcoin 
node.

• Versatility: RPC commands range from basic queries to intricate administrative 
operations.

• Importance: Provides a gateway for developers and administrators to interact directly 
with the Bitcoin protocol.



Implementing RPC Commands in Bitcoin 
Code

• RPC Implementation: In Bitcoin, the source code contains specific functions dedicated to 
handling RPC calls.

• rpc/server.cpp: The primary file where RPC server operations are defined and managed.

• Command Registration: New RPC commands are registered using the CRPCCommand 
class.

• Parameter Handling: Commands can have multiple parameters, which are parsed and 
validated before execution.

• Error Handling: Proper mechanisms are in place to handle errors and provide meaningful 
feedback.

• Extensibility: Bitcoin's RPC framework is designed to be modular, allowing developers to 
add new commands with ease.



Common RPC Commands and Their 
Usage

• getinfo: Retrieves an overview of the node's status, including version, balance, 
and network info.

• sendtoaddress: Allows users to transfer bitcoins to a specified address.

• getblock: Fetches a block's details using its hash, revealing transactions and 
metadata.

• listunspent: Displays unspent transaction outputs (UTXOs) available for 
spending.

• validateaddress: Checks if a Bitcoin address is valid and provides related details.

• getpeerinfo: Offers insights into connected peers, including IP, version, and 
latency.



Segregated Witness (SegWit)



Understanding SegWit

• SegWit: A protocol upgrade that separates the witness data from transaction data.

• Transaction Malleability: SegWit addresses this issue, ensuring transaction IDs remain 
consistent before and after confirmation.

• Block Capacity: SegWit effectively increases the block size limit, allowing more 
transactions per block.

• Lightning Network: SegWit's malleability fix enables second-layer solutions like the 
Lightning Network.

• Backward Compatibility: SegWit is a soft fork, meaning it's compatible with older 
versions of Bitcoin software.

• Adoption: Since its introduction, SegWit adoption has grown, leading to faster and 
cheaper transactions.



Implementing SegWit in the Bitcoin Code

• Codebase Integration: SegWit was introduced in Bitcoin Core 0.13.1, enhancing the 
protocol's scalability.

• Witness Data: SegWit separates the signature data (witness) from the main transaction 
data.

• P2WPKH & P2WSH: New transaction types introduced with SegWit to support its 
functionality.

• Weight Units: A new measurement for block size, ensuring blocks remain below the 4 
million weight unit limit.

• Witness Commitment: A hash of all witness data is included in the coinbase transaction 
for block validation.

• Network Relay: SegWit transactions are relayed through the network differently, 
optimizing bandwidth.



Impact of SegWit on Transactions and 
Blocks

• Transaction Malleability Fix: SegWit addresses the malleability issue, allowing for more 
secure Layer 2 solutions.

• Increased Block Capacity: SegWit effectively increases the block size without changing 
the block size limit.

• Fee Reduction: SegWit transactions often result in lower fees due to their reduced size.

• Signature Data: By segregating the witness data, transactions become more lightweight.

• Scalability Enhancement: SegWit paves the way for further scalability solutions like the 
Lightning Network.

• Uptake and Adoption: Over time, a significant portion of transactions on the network 
have become SegWit-enabled.



The Bitcoin Serialization 
Process



Understanding Serialization in Bitcoin

• Definition: Serialization is the process of converting complex data structures into a byte 
stream.

• Purpose: Serialization in Bitcoin ensures data consistency across different network 
nodes.

• Compact Storage: Serialized data allows for efficient storage and retrieval in the 
blockchain.

• Transaction Verification: Serialization aids in hash generation for transaction verification.

• Network Communication: Serialized data is used for peer-to-peer communication in the 
Bitcoin network.

• Deserialization: The reverse process, turning byte streams back into their original data 
structures for processing and validation.



Implementing Serialization in Bitcoin 
Code

• Serialization Functions: Bitcoin code has specific functions dedicated to converting data 
structures to byte streams.

• Data Types: Different data types in Bitcoin, like transactions and blocks, have unique 
serialization methods.

• Consistency: Proper serialization ensures network-wide consistency and aids in data 
validation.

• VarInt Encoding: Bitcoin uses VarInt encoding for integers to save space and maintain 
efficiency.

• Hexadecimal Representation: Serialized data is often represented in hexadecimal for 
readability and debugging.

• Deserialization: Bitcoin code also contains functions to deserialize data, converting byte 
streams back to original structures.



Deserialization and Its Role

• Deserialization Defined: Deserialization is the process of converting a byte stream back 
into its original data structure.

• Network Communication: Deserialization is crucial for nodes to interpret and validate
data received from other nodes.

• Data Integrity: Proper deserialization ensures the accuracy and integrity of data 
structures in the Bitcoin network.

• Error Handling: Bitcoin's deserialization functions include checks to handle potential 
errors or malicious data.

• Efficiency: Deserialization is optimized for speed, ensuring timely processing of large 
volumes of data.

• Complement to Serialization: While serialization prepares data for storage or 
transmission, deserialization readies it for processing and validation.



Bitcoin Forks and Code 
Modifications



Understanding Soft and Hard Forks

• Soft Fork Defined: A soft fork introduces backward-compatible changes, meaning new 
rules are a subset of the old rules.

• Hard Fork Defined: A hard fork introduces changes that are not backward-compatible, 
requiring all nodes to upgrade.

• Network Consensus: Both soft and hard forks aim to achieve network consensus but 
approach it differently.

• Upgrade Decisions: While soft forks require only miners to upgrade, hard forks 
necessitate all participants to make changes.

• Potential Splits: Hard forks can lead to chain splits if not all participants agree on the 
changes.

• Importance of Communication: Prior to any fork, clear communication within the 
community is crucial to ensure smooth transitions.



Fork Implementation in Bitcoin Code

• Versioning Control: Bitcoin code uses BIP9 for signaling readiness for soft forks among 
miners.

• Activation Threshold: A specific percentage of miners must signal readiness before a 
soft fork is activated.

• Hard Forks: Implementing hard forks requires explicit code changes and broad 
consensus in the community.

• Replay Protection: For hard forks, replay protection ensures transactions are valid on 
one chain but not on another.

• Code Review: All proposed forks undergo rigorous peer review before being merged into 
the main codebase.

• Historical Forks: Bitcoin has seen several forks, like the SegWit2x proposal, which was 
eventually abandoned.



Major Forks in Bitcoin History

• Bitcoin Cash (BCH): A hard fork from Bitcoin in 2017, increasing the block size to 8MB.

• Bitcoin Gold (BTG): Introduced in 2017, it aimed to decentralize mining by using a 
different algorithm.

• SegWit (Segregated Witness): A soft fork in 2017, it increased block capacity and fixed 
transaction malleability.

• Bitcoin SV (BSV): A contentious hard fork from Bitcoin Cash in 2018, focusing on larger 
block sizes.

• Bitcoin XT & Bitcoin Classic: Earlier attempts to increase block size, but didn't gain 
enough support.

• Taproot Upgrade: A soft fork in 2021, it improved privacy, scalability, and introduced 
new scripting capabilities.



The Bitcoin Core GUI



The Bitcoin Qt Client

• Bitcoin Qt: The original software written by Bitcoin's creator, Satoshi Nakamoto.

• Graphical User Interface (GUI): Provides a user-friendly way to interact with the 
Bitcoin network.

• Full Node Operation: Bitcoin Qt allows users to run a full node, validating 
transactions and blocks.

• Wallet Functionality: Users can send, receive, and store Bitcoin directly from the 
client.

• Customizable Settings: Offers advanced settings for network, blockchain, and 
mining preferences.

• Open-Source: Anyone can review, modify, or contribute to the Bitcoin Qt 
codebase.



Understanding the GUI Code

• Qt Framework: The foundation for Bitcoin's GUI, providing tools for creating 
interactive user interfaces.

• Source Directory: GUI code is primarily located in the src/qt directory of the 
Bitcoin Core repository.

• Main Window: The bitcoin.cpp file defines the main window and its interactions.

• Dialogs and Forms: GUI elements like transaction forms and address books are 
defined in separate .ui files.

• Signal-Slot Mechanism: Enables communication between GUI components, 
ensuring responsive user interactions.

• Threading: The GUI operates on a separate thread to maintain responsiveness 
despite intensive blockchain operations.



Customizing the GUI

• Qt Stylesheets: Enable styling of GUI elements, similar to CSS for web interfaces.

• Themes: Bitcoin Core supports multiple themes allowing users to personalize 
their experience.

• Localization: GUI supports multiple languages, ensuring global accessibility.

• Resizable Elements: Users can adjust the size of panels and windows for a 
tailored view.

• Configuration Files: Advanced users can tweak the GUI through bitcoin.conf
settings.

• Plugins and Extensions: Modular design allows for add-ons to enhance GUI 
functionality.



Contribute to Bitcoin Core 
Development



Understanding the Bitcoin Improvement 
Proposal (BIP) Process

• Bitcoin Improvement Proposals (BIPs): Formal documents for introducing 
features or changes to Bitcoin.

• BIP Types: Three main categories - Standards Track, Informational, and Process 
BIPs.

• BIP Lifecycle: Proposals undergo stages - Draft, Proposed, Final, and Rejected.

• Community Consensus: BIPs require community feedback and consensus before 
implementation.

• BIP Editors: Designated individuals who manage and organize the BIPs.

• BIP Numbering: Each BIP is assigned a unique number for tracking and reference.



Coding Guidelines and Best Practices

• Coding Standards: Adherence to a consistent coding style ensures readability and 
maintainability.

• Documentation: Proper comments and documentation aid future developers 
and reviewers.

• Testing: Every change should come with tests to ensure stability and prevent 
regressions.

• Peer Review: Submitted code undergoes rigorous review by other developers for 
quality assurance.

• Performance: Optimize for efficiency but prioritize clarity and correctness in the 
code.

• Security: Always prioritize security to protect the network and its users.



Making a Pull Request and Peer Review 
Process

• Pull Request (PR): A proposal to merge new code or changes into the main codebase.

• Commit Messages: Clear and concise messages help reviewers understand the changes.

• Continuous Integration (CI): Automated tests run to ensure code compatibility and 
stability.

• Feedback Loop: Developers provide feedback, and contributors make necessary 
revisions.

• Consensus: Merging requires agreement from maintainers and active contributors.

• Iterative Process: PRs often undergo multiple rounds of review and revision before 
merging.


	Slide 1: Bitcoin Code
	Slide 2: Introduction to the Bitcoin Source Code
	Slide 3: Overview and Historical Context
	Slide 4: Core Components of Bitcoin Code
	Slide 5: Setting up the Bitcoin Development Environment
	Slide 6: The Bitcoin Core Architecture
	Slide 7: Understanding the Bitcoin Repository Structure
	Slide 8: Important Files and Their Purpose
	Slide 9: The Bitcoin Core Daemon: bitcoind
	Slide 10: Bitcoin Protocol and Network Communication
	Slide 11: The Peer-to-Peer Network
	Slide 12: Message Types and Communication Protocol
	Slide 13: The Bitcoin's P2P Code
	Slide 14: The Blockchain Data Structure
	Slide 15: Understanding the Block Structure
	Slide 16: Implementing Blocks in Bitcoin Code
	Slide 17: Block Validation and the Chainstate Database
	Slide 18: Transactions in the Bitcoin Code
	Slide 19: Understanding the Transaction Structure
	Slide 20: Implementing Transactions in the Bitcoin Code
	Slide 21: Transaction Validation
	Slide 22: Scripting and Smart Contracts
	Slide 23: Understanding Bitcoin Script
	Slide 24: Bitcoin Script Opcodes
	Slide 25: Implementing Script in the Bitcoin Code
	Slide 26: Handling Wallets
	Slide 27: The Bitcoin Wallet: Purpose and Structure
	Slide 28: Implementing Wallets in Bitcoin Code
	Slide 29: Managing Wallets: Creating, Loading, Unloading
	Slide 30: Bitcoin Address Generation
	Slide 31: Address Types: P2PKH, P2SH, P2WPKH, P2WSH
	Slide 32: Implementing Address Generation in Bitcoin Code
	Slide 33: Address Validation
	Slide 34: The Bitcoin Mining Process
	Slide 35: Understanding Proof-of-Work
	Slide 36: Implementing Mining in the Bitcoin Code
	Slide 37: Difficulty Adjustment and Block Rewards
	Slide 38: Network Security
	Slide 39: Handling Denial-of-Service Attacks
	Slide 40: Addressing Double Spending Issues
	Slide 41: Bitcoin's Defense Mechanisms in Code
	Slide 42: Transaction Mempool
	Slide 43: Understanding the Mempool
	Slide 44: Implementing Mempool in the Bitcoin Code
	Slide 45: Mempool Management and Policy
	Slide 46: The Peer Discovery Mechanism
	Slide 47: Understanding Peer Discovery
	Slide 48: Implementing Peer Discovery in Bitcoin Code
	Slide 49: Peer Scoring and Ban Mechanism
	Slide 50: The Bitcoin Consensus Mechanism
	Slide 51: Nakamoto Consensus Explained
	Slide 52: Consensus Implementation in Bitcoin Code
	Slide 53: Block Propagation and Orphan Blocks
	Slide 54: Bitcoin Test Framework
	Slide 55: Overview of Bitcoin's Test Suite
	Slide 56: Writing Unit Tests for Bitcoin Core
	Slide 57: Functional Tests and Test Coverage
	Slide 58: Handling RPC Commands
	Slide 59: Understanding RPC Interface
	Slide 60: Implementing RPC Commands in Bitcoin Code
	Slide 61: Common RPC Commands and Their Usage
	Slide 62: Segregated Witness (SegWit)
	Slide 63: Understanding SegWit
	Slide 64: Implementing SegWit in the Bitcoin Code
	Slide 65: Impact of SegWit on Transactions and Blocks
	Slide 66: The Bitcoin Serialization Process
	Slide 67: Understanding Serialization in Bitcoin
	Slide 68: Implementing Serialization in Bitcoin Code
	Slide 69: Deserialization and Its Role
	Slide 70: Bitcoin Forks and Code Modifications
	Slide 71: Understanding Soft and Hard Forks
	Slide 72: Fork Implementation in Bitcoin Code
	Slide 73: Major Forks in Bitcoin History
	Slide 74: The Bitcoin Core GUI
	Slide 75: The Bitcoin Qt Client
	Slide 76: Understanding the GUI Code
	Slide 77: Customizing the GUI
	Slide 78: Contribute to Bitcoin Core Development
	Slide 79: Understanding the Bitcoin Improvement Proposal (BIP) Process
	Slide 80: Coding Guidelines and Best Practices
	Slide 81: Making a Pull Request and Peer Review Process

